/* $Id: t_bdRsaFactorN.c $ */ /* This code uses the free BIGDIGITS library version 2.3 available from http://di-mgt.com.au/bigdigits.html to show how to factor the RSA modulus n given the secret exponent d Copyright (C) 2012 DI Management Services Pty Ltd. All rights reserved. */ /* Last updated: $Date: 2012-12-24 16:13 $ $Revision: 1.0.1 $ $Author: dai $ */ #include <stdio.h> #include "bigd.h" int debug = 1; #define DBDPRINT(pre, x, post) if(debug)bdPrintDecimal((pre),(x),(post)) const int primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, }; #define NPRIMES (sizeof(primes)/sizeof(primes[0])) int find_factors_of_n(BIGD p, BIGD q, BIGD n, BIGD e, BIGD d) { BIGD k, t, g, x, y, r; int i, isdone; k = bdNew(); t = bdNew(); g = bdNew(); x = bdNew(); y = bdNew(); r = bdNew(); bdSetZero(p); bdSetZero(q); /* 1. [Initialize] Set k <-- de - 1 */ bdMultiply(k, d, e); bdDecrement(k); DBDPRINT("k=de-1=", k, "\n"); /* 2. [Try a random g] Choose g at random from {2, ..., N-1} */ /* (we cheat a bit here and just try the first primes in order) */ for (isdone = 0, i = 0; !isdone && i < NPRIMES; i++) { bdSetShort(g, primes[i]); DBDPRINT("Trying g=", g, "\n"); /* Set t <-- k */ bdSetEqual(t, k); /* 3. [Next t] If t is divisible by 2 ... */ while (bdIsEven(t)) { /* Set t <-- t / 2 */ bdShiftRight(t, t, 1); DBDPRINT("t=", t, "\n"); /* Set x = g^t mod N */ bdModExp(x, g, t, n); DBDPRINT("x=g^t mod N=", x, "\n"); /* 4. [Finished?] If x > 1 and y = gcd(x-1, N) then set p <-- y and q <-- N/y, output (p,q) and stop. */ if (bdShortCmp(x, 1) > 0) { bdDecrement(x); bdGcd(y, x, n); DBDPRINT("y=gcd(x-1,N)=", y, "\n"); if (bdShortCmp(y, 1) > 0) { /* We have it */ bdSetEqual(p, y); bdDivide(q, r, n, y); isdone = 1; break; } } } /* 4a. ... otherwise go to step 3. */ } /* 3a. ... otherwise go to step 2. */ /* Finally, to be consistent with convention, we make sure p > q */ if (isdone && bdCompare(p, q) < 0) { bdSetEqual(r, p); bdSetEqual(p, q); bdSetEqual(q, r); } bdFree(&k); bdFree(&t); bdFree(&g); bdFree(&x); bdFree(&y); bdFree(&r); return isdone; } void test_simple(void) { BIGD n, e, d, p, q; n = bdNew(); e = bdNew(); d = bdNew(); p = bdNew(); q = bdNew(); bdSetShort(n, 25777); bdSetShort(e, 3); bdSetShort(d, 16971); printf("Input:\n"); bdPrintDecimal("n=", n, "\n"); bdPrintDecimal("e=", e, "\n"); bdPrintDecimal("d=", d, "\n"); find_factors_of_n(p, q, n, e, d); printf("Output:\n"); bdPrintDecimal("p=", p, "\n"); bdPrintDecimal("q=", q, "\n"); //clean_up: bdFree(&n); bdFree(&e); bdFree(&d); bdFree(&p); bdFree(&q); } void test_508(void) { BIGD n, e, d, p, q; n = bdNew(); e = bdNew(); d = bdNew(); p = bdNew(); q = bdNew(); /* Using 508-bit RSA key from "Some Examples of the PKCS Standards" An RSA Laboratories Technical Note, Burton S. Kaliski Jr., November 1, 1993 p = 33 d4 84 45 c8 59 e5 23 40 de 70 4b cd da 06 5f bb 40 58 d7 40 bd 1d 67 d2 9e 9c 14 6c 11 cf 61 q = 33 5e 84 08 86 6b 0f d3 8d c7 00 2d 3f 97 2c 67 38 9a 65 d5 d8 30 65 66 d5 c4 f2 a5 aa 52 62 8b */ bdConvFromHex(n, "0a66791dc6988168de7ab77419bb7fb0c001c62710270075142942e19a8d8c51d053b3e3782a1de5dc5af4ebe99468170114a1dfe67cdc9a9af55d655620bbab"); bdConvFromHex(e, "010001"); bdConvFromHex(d, "0123c5b61ba36edb1d3679904199a89ea80c09b9122e1400c09adcf7784676d01d23356a7d44d6bd8bd50e94bfc723fa87d8862b75177691c11d757692df8881"); printf("Input:\n"); bdPrintHex("n=", n, "\n"); bdPrintHex("e=", e, "\n"); bdPrintHex("d=", d, "\n"); find_factors_of_n(p, q, n, e, d); printf("Output:\n"); bdPrintHex("p=", p, "\n"); bdPrintHex("q=", q, "\n"); //clean_up: bdFree(&n); bdFree(&e); bdFree(&d); bdFree(&p); bdFree(&q); } void test_alice1024(void) { BIGD n, e, d, p, q; n = bdNew(); e = bdNew(); d = bdNew(); p = bdNew(); q = bdNew(); /* Using Alice's 1024-bit RSA key from [RFC4134]: Hoffman, P., Ed., "Examples of S/MIME Messages", RFC 4134, July 2005. */ bdConvFromHex(n, "E08973398DD8F5F5E88776397F4EB005BB5383DE0FB7ABDC7DC775290D052E6D12DFA68626D4D26FAA5829FC97ECFA82510F3080BEB1509E4644F12CBBD832CFC6686F07D9B060ACBEEE34096A13F5F7050593DF5EBA3556D961FF197FC981E6F86CEA874070EFAC6D2C749F2DFA553AB9997702A648528C4EF357385774575F"); bdConvFromHex(e, "010001"); bdConvFromHex(d, "A403C327477634346CA686B57949014B2E8AD2C862B2C7D748096A8B91F736F275D6E8CD15906027314735644D95CD6763CEB49F56AC2F376E1CEE0EBF282DF439906F34D86E085BD5656AD841F313D72D395EFE33CBFF29E4030B3D05A28FB7F18EA27637B07957D32F2BDE8706227D04665EC91BAF8B1AC3EC9144AB7F21"); // p = F6D6E022214C5F0A70FF27FCE5B3506A9DE50FB58596C640FAA80AB49B9B0C55C2011DF937828A14C8F2930E92CDA56621B93CD206BFB45531C9DCADCA982DD1 // q = E8DEB0112509D2025101DE8AE89850F5777761A445936B085596735DF4C85B129322738B7FD3707FF5A4AABB74FD3C226ADA38912A865B6C14E8AE4C9EFA8E2F printf("Input:\n"); bdPrintHex("n=", n, "\n"); bdPrintHex("e=", e, "\n"); bdPrintHex("d=", d, "\n"); find_factors_of_n(p, q, n, e, d); printf("Output:\n"); bdPrintHex("p=", p, "\n"); bdPrintHex("q=", q, "\n"); //clean_up: bdFree(&n); bdFree(&e); bdFree(&d); bdFree(&p); bdFree(&q); } int main(void) { test_simple(); test_508(); //test_alice1024(); return 0; }