/* $Id: t_bdRsaFactorN.c $ */
/*
This code uses the free BIGDIGITS library version 2.3 available from
http://di-mgt.com.au/bigdigits.html
to show how to factor the RSA modulus n given the secret exponent d
Copyright (C) 2012 DI Management Services Pty Ltd. All rights reserved.
*/
/*
Last updated:
$Date: 2012-12-24 16:13 $
$Revision: 1.0.1 $
$Author: dai $
*/
#include <stdio.h>
#include "bigd.h"
int debug = 1;
#define DBDPRINT(pre, x, post) if(debug)bdPrintDecimal((pre),(x),(post))
const int primes[] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
};
#define NPRIMES (sizeof(primes)/sizeof(primes[0]))
int find_factors_of_n(BIGD p, BIGD q, BIGD n, BIGD e, BIGD d)
{
BIGD k, t, g, x, y, r;
int i, isdone;
k = bdNew();
t = bdNew();
g = bdNew();
x = bdNew();
y = bdNew();
r = bdNew();
bdSetZero(p);
bdSetZero(q);
/* 1. [Initialize] Set k <-- de - 1 */
bdMultiply(k, d, e);
bdDecrement(k);
DBDPRINT("k=de-1=", k, "\n");
/* 2. [Try a random g] Choose g at random from {2, ..., N-1} */
/* (we cheat a bit here and just try the first primes in order) */
for (isdone = 0, i = 0; !isdone && i < NPRIMES; i++)
{
bdSetShort(g, primes[i]);
DBDPRINT("Trying g=", g, "\n");
/* Set t <-- k */
bdSetEqual(t, k);
/* 3. [Next t] If t is divisible by 2 ... */
while (bdIsEven(t))
{
/* Set t <-- t / 2 */
bdShiftRight(t, t, 1);
DBDPRINT("t=", t, "\n");
/* Set x = g^t mod N */
bdModExp(x, g, t, n);
DBDPRINT("x=g^t mod N=", x, "\n");
/* 4. [Finished?] If x > 1 and y = gcd(x-1, N)
then set p <-- y and q <-- N/y, output (p,q) and stop.
*/
if (bdShortCmp(x, 1) > 0)
{
bdDecrement(x);
bdGcd(y, x, n);
DBDPRINT("y=gcd(x-1,N)=", y, "\n");
if (bdShortCmp(y, 1) > 0)
{ /* We have it */
bdSetEqual(p, y);
bdDivide(q, r, n, y);
isdone = 1;
break;
}
}
} /* 4a. ... otherwise go to step 3. */
} /* 3a. ... otherwise go to step 2. */
/* Finally, to be consistent with convention, we make sure p > q */
if (isdone && bdCompare(p, q) < 0)
{
bdSetEqual(r, p);
bdSetEqual(p, q);
bdSetEqual(q, r);
}
bdFree(&k);
bdFree(&t);
bdFree(&g);
bdFree(&x);
bdFree(&y);
bdFree(&r);
return isdone;
}
void test_simple(void)
{
BIGD n, e, d, p, q;
n = bdNew();
e = bdNew();
d = bdNew();
p = bdNew();
q = bdNew();
bdSetShort(n, 25777);
bdSetShort(e, 3);
bdSetShort(d, 16971);
printf("Input:\n");
bdPrintDecimal("n=", n, "\n");
bdPrintDecimal("e=", e, "\n");
bdPrintDecimal("d=", d, "\n");
find_factors_of_n(p, q, n, e, d);
printf("Output:\n");
bdPrintDecimal("p=", p, "\n");
bdPrintDecimal("q=", q, "\n");
//clean_up:
bdFree(&n);
bdFree(&e);
bdFree(&d);
bdFree(&p);
bdFree(&q);
}
void test_508(void)
{
BIGD n, e, d, p, q;
n = bdNew();
e = bdNew();
d = bdNew();
p = bdNew();
q = bdNew();
/*
Using 508-bit RSA key from
"Some Examples of the PKCS Standards"
An RSA Laboratories Technical Note,
Burton S. Kaliski Jr., November 1, 1993
p = 33 d4 84 45 c8 59 e5 23 40 de 70 4b cd da 06 5f bb 40 58
d7 40 bd 1d 67 d2 9e 9c 14 6c 11 cf 61
q = 33 5e 84 08 86 6b 0f d3 8d c7 00 2d 3f 97 2c 67 38 9a 65
d5 d8 30 65 66 d5 c4 f2 a5 aa 52 62 8b
*/
bdConvFromHex(n, "0a66791dc6988168de7ab77419bb7fb0c001c62710270075142942e19a8d8c51d053b3e3782a1de5dc5af4ebe99468170114a1dfe67cdc9a9af55d655620bbab");
bdConvFromHex(e, "010001");
bdConvFromHex(d, "0123c5b61ba36edb1d3679904199a89ea80c09b9122e1400c09adcf7784676d01d23356a7d44d6bd8bd50e94bfc723fa87d8862b75177691c11d757692df8881");
printf("Input:\n");
bdPrintHex("n=", n, "\n");
bdPrintHex("e=", e, "\n");
bdPrintHex("d=", d, "\n");
find_factors_of_n(p, q, n, e, d);
printf("Output:\n");
bdPrintHex("p=", p, "\n");
bdPrintHex("q=", q, "\n");
//clean_up:
bdFree(&n);
bdFree(&e);
bdFree(&d);
bdFree(&p);
bdFree(&q);
}
void test_alice1024(void)
{
BIGD n, e, d, p, q;
n = bdNew();
e = bdNew();
d = bdNew();
p = bdNew();
q = bdNew();
/*
Using Alice's 1024-bit RSA key from [RFC4134]:
Hoffman, P., Ed., "Examples of S/MIME Messages", RFC 4134, July 2005.
*/
bdConvFromHex(n, "E08973398DD8F5F5E88776397F4EB005BB5383DE0FB7ABDC7DC775290D052E6D12DFA68626D4D26FAA5829FC97ECFA82510F3080BEB1509E4644F12CBBD832CFC6686F07D9B060ACBEEE34096A13F5F7050593DF5EBA3556D961FF197FC981E6F86CEA874070EFAC6D2C749F2DFA553AB9997702A648528C4EF357385774575F");
bdConvFromHex(e, "010001");
bdConvFromHex(d, "A403C327477634346CA686B57949014B2E8AD2C862B2C7D748096A8B91F736F275D6E8CD15906027314735644D95CD6763CEB49F56AC2F376E1CEE0EBF282DF439906F34D86E085BD5656AD841F313D72D395EFE33CBFF29E4030B3D05A28FB7F18EA27637B07957D32F2BDE8706227D04665EC91BAF8B1AC3EC9144AB7F21");
// p = F6D6E022214C5F0A70FF27FCE5B3506A9DE50FB58596C640FAA80AB49B9B0C55C2011DF937828A14C8F2930E92CDA56621B93CD206BFB45531C9DCADCA982DD1
// q = E8DEB0112509D2025101DE8AE89850F5777761A445936B085596735DF4C85B129322738B7FD3707FF5A4AABB74FD3C226ADA38912A865B6C14E8AE4C9EFA8E2F
printf("Input:\n");
bdPrintHex("n=", n, "\n");
bdPrintHex("e=", e, "\n");
bdPrintHex("d=", d, "\n");
find_factors_of_n(p, q, n, e, d);
printf("Output:\n");
bdPrintHex("p=", p, "\n");
bdPrintHex("q=", q, "\n");
//clean_up:
bdFree(&n);
bdFree(&e);
bdFree(&d);
bdFree(&p);
bdFree(&q);
}
int main(void)
{
test_simple();
test_508();
//test_alice1024();
return 0;
}